Neal Devaraj
Biomimetic Chemistry, Molecular Imaging, Electrochemistry

Contact Information
Assistant Professor of Chemistry and Biochemistry

Office: Urey Hall 4120D
Phone: 858-534-9539
Email: ndevaraj@ucsd.edu
Web: devarajgroup.ucsd.edu
Group: View group members
Education
2007 PhD, Chemistry, Stanford University
2002 Dual BS, Chemistry and Biology, MIT
Appointments
2011 Assistant Professor, University of California, San Diego
2010 Inst., Harvard Medical School
Awards and Academic Honors
2013
NSF CAREER Award
2013
Department of Defense MURI Award
2012
Thieme Chemistry Journal Award
2010
NIH Career Development Award
2007
ACS Young Investigator Award
Research Interests
Our research group focuses on chemical biology with an emphasis on developing bioorthogonal reactions for addressing questions in synthetic biology and molecular imaging. Our current research interests are in triggering selective reactions for applications in biomimetic chemistry, challenging conventional notions of where and how chemical reactions are performed. These interests are reflected in our recent work on de novo forming vesicles and the development and in vivo application of tetrazine bioorthogonal chemistries. The overall goal of my research program is to create and utilize chemical techniques that mimic the exquisite control of biology in achieving functionality.

In the field of synthetic biology, we are interested in understanding how catalytic coupling reactions can drive the self-assembly, growth, and reproduction of lipid vesicle assemblies. The transition from microscopic chemical reactions to macroscopic self-reproducing systems must have been a key step in the emergence of early life, yet there is little knowledge about how this process began for the first primitive cells. Although the self-assembly of simple lipids is well understood, coupling their self-assembly to more complex biomimetic functions, such as chemically driven self-reproduction and information transfer, has been extremely difficult. Understanding how sets of chemical reactions can lead to “living” systems capable of growth, reproduction, and competitive evolution, remains a grand challenge in the chemical sciences.

With respect to molecular imaging, our group is interested in applying tetrazine cycloadditions, a form of next generation “click” chemistry, to imaging problems at the cellular and whole animal level. Tetrazine cycloadditions are rapid, catalyst-free, inverse Diels-Alder reactions that are gaining interest as biologically compatible coupling reactions. We are involved at all levels, from developing new reactions schemes to implementation in live animal models of human disease. The latter work is aided by working with collaborators at the Moores Cancer Center.
Primary Research Area
Biochemistry
Interdisciplinary interests
Bioorganic
Materials
Synthesis

Outreach Activities
My experience as an ethnic minority in this country has cemented my commitment to providing a diverse environment to my coworkers and students. Diversity has been an important component of both to my scientific career and my personal life. I am dedicated to encouraging equality, fairness, and diversity in the workplace. This commitment to promoting diversity is reflected in my recruitment, retention, and mentorship of several students and fellows from underrepresented backgrounds. Being able to improve access and training to students from underrepresented groups is truly exciting and, in my opinion, one of the greatest benefits of working at a top-tier public research university such as UCSD. My philosophy toward mentoring is to emphasize the excitement of science, the positives of a scientific career path, and the attainability of research goals given proper design and methodological execution.

I also work with UCSD CREATE (Center for Research on Educational Equity, Assessment, and Teaching Excellence) to develop an educational component integrating our bottom-up synthetic cell research with an existing coordinated effort at UC San Diego to improve the STEM pipeline K-20 in San Diego. In particular, we will focus on reaching populations typically underrepresented in STEM fields. Specifically, this coordinated effort will link our lab’s research interests and results in the chemistry of vesicle reproduction with two efforts at the university: 1) the San Diego Science Project (SDSP), a K-12 professional development and teacher support organization training both UCSD undergrads and teachers to engage science content with secondary students and 2) the TRIO Upward Bound Math/Science Program (UBMS), a federally funded outreach program that aims to increase the number of underrepresented minorities and low-income youth that enroll in undergraduate education. Our goal is to stimulate the entry of underrepresented and low income student populations into STEM fields and to expose a broad range of students and teachers to origin of life and synthetic biology topics.
Image Gallery


a catalytic biomimetic coupling reaction capable of driving the de novo self-assembly of phospholipid membranes.

We have designed methyl-cyclopropene tags capable of reacting rapidly with tetrazines while maintaining stability in aqueous solution.

Selected Publications